本系列的前五篇文章談到的,幾乎都是單一變數的時間序列資料。也就是假設每一樣產品的需求為獨立,彼此互不影響,每一項產品的預期需求完全分開來預測。但在業界實務當中,我們手頭上的時間序列資料,可能有群組與階層的隸屬關聯,而本系列的最後一篇文章,就是要聊聊具有這種結構關係的需求預測難題。 # 簡單的群組與階層拆分與整併預測 以筆記型電腦為例,假設某品牌商旗下有兩個不同系列的筆記型電腦(姑且就稱為 A 款與 B 款),假設這兩款都可以依照螢幕尺寸再分成 14 吋與 15 吋好了,該品牌的 A 與 B 兩款筆電都銷售全球(就粗略分成亞太、北美洲、歐洲、與新興市場四大地區好了)。有了上述的類別標籤,我們就能依照這些標籤,將過往的銷售數據進行群組與階層的拆分或整併。而在進行需求預測時,無論我們是「由下而上」(Button-up)先將切到最細層級的個別序列資料(例如 A 款的 14 吋筆電在亞太地區的未來預期需求)分別預測之後,再逐層往上堆疊;抑或是「由上而下」(Top-down)先使用彙總到最頂層的序列資料進行預測之後,再依照特定比例拆分到底下各層,這種兩分預測流程,從技術面而言都說得通,相關細節可以參考 該電子書的章節頁面 ,裡頭有十分詳盡的觀念談。 # 同時預測多條時間序列 若我們採行的是「由下而上」的預測方式,且假設我們明確知道同階層或同群組的序列資料當中,彼此具有一定程度的關聯性存在。這種時候就可以使用 向量自迴歸模型 (Vector Autoregression),針對同一階層或者同一群組的時間序列資料來進行預測。然而,就跟其他基於統計學的時間序列預測模型一樣,該方法的使用上要留意一些的限制與假設前提,否則用起來的預測成效也不會好到哪裡去,甚至根本用不起來。 例如最簡單的:當你一次把太多條時間序列綁成一個龐大的矩陣來求解……那麼求解的複雜度指數上升,甚至模型會因為無法收斂而直接跳 Error 給你看。又或者是,你綁在一起預測的這些時間序列壓根沒有統計上的關聯性,那麼為了圖方便性而向量自迴歸模型來做預測的結果,就跟你拿一串隨機序列的資料說要用 ARIMA 模型來準確預測下一步,是一樣的概念。 # 群組與階層的陷阱 延續上個段落所提到的,既然都特地寫了這篇文章,當然不是請讀者們把上面那本電子書的章節看過而已。雖然在業界當中的許多產品需求資料,都能夠依照上述方式來進行群組與階層...